Nonlinear Evaluation of Electroencephalogram Signals in Different Sleep Stages in Apnea Episodes

نویسندگان

  • Atefeh Goshvarpour
  • Ataollah Abbasi
چکیده

Distinct sleep phases are related to different dynamical patterns in electroencephalogram (EEG) signals. In this article, the relationship between the sleep stages and nonlinear behavior of sleep EEG is explored. In particular, analysis of approximate entropy (ApEn) and the largest Lyapunov exponent is evaluated in patients with sleep apnea, which is defined as respiratory flow that is suspended or decreased for more than 10 s. The pathological sleep EEG signals for analysis were obtained from the MIT-BIH polysomnography database available online at the PhysioBank. The results show that for the both normal and apneic sleep epochs, ApEn decreased significantly as the sleep goes into deeper stages. Therefore, it indicated that as sleep becomes deeper, the brain function becomes less activated. Compared with normal sleep, the mean value of largest lyapunov exponents was also significantly lower than that of normal epochs during deep sleep stages. The results also show that the average largest lyapunov exponents of EEG signals increased in the REM state. Because during this stage of sleep, the cortex becomes more active and more neurons incorporate in the information processing. In conclusion, the nonlinear dynamical measures obtained from the nonlinear dynamical analysis such as the approximate entropy and largest lyapunov exponents can be useful for characterizing the physiological or pathological states of the brain.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Electroencephalogram Signals in Different Sleep Stages using Detrended Fluctuation Analysis

Scaling behavior is an indicator of the lack of characteristic time scale, and the existence of longrange correlations related to physiological constancy preservation. To investigate the fluctuations of the sleep electroencephalogram (EEG) over various time scales during different sleep stages detrended fluctuation analysis (DFA) is studied. The sleep EEG signals for analysis were obtained from...

متن کامل

Nonlinear Analysis of Sleep Stages Using Detrended Fluctuation Analysis: Normal vs. Sleep Apnea

The purpose of this paper is to compare the characteristics of EEGs, which typically exhibit non-stationarity and long-range correlations, by calculating its scaling exponents in between sleep apnea and the normal conditions. Detrended fluctuation analysis (DFA), which is suitable for non-stationary time series, is used to analyze the fluctuation of the EEG dynamics by calculating its scaling e...

متن کامل

Aging and Sleep Stage Effects on Entropy of Electroencephalogram Signals

OF THESIS AGING AND SLEEP STAGE EFFECTS ON ENTROPY OF ELECTROENCEPHALOGRAM SIGNALS The aging brain is characterized by alteration in synaptic contacts, which leads to decline of motor and cognitive functions. These changes are reflected in the age related shifts in power spectrum of electroencephalogram (EEG) signals in both wakefulness and sleep. Various non-linear measures have been used to o...

متن کامل

A Comparison Study on Multidomain EEG Features for Sleep Stage Classification

Feature extraction from physiological signals of EEG (electroencephalogram) is an essential part for sleep staging. In this study, multidomain feature extraction was investigated based on time domain analysis, nonlinear analysis, and frequency domain analysis. Unlike the traditional feature calculation in time domain, a sequence merging method was developed as a preprocessing procedure. The obj...

متن کامل

A study of sleep staging based on a sample entropy analysis of electroencephalogram.

In this paper we report a detection method for different sleep stages and it is based on a single-channel electroencephalogram (EEG) system. The system is simple and can be easily setup in homes to perform sleep EEG recording, overnight sleep EEG automatic staging, and sleep quality evaluation. EEG data of 14 sleeping subjects were recorded through the entire night. All subjects were within the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013